Problems in creating a neural network for sentiment analysis
Keywords:
sentiment analysis, neural networks, сonvolutional neural networks, natural language processingAbstract
A vast majority of the work in Sentiment Analysis has been on developing more accurate sentiment classifiers, usually involving supervised machine learning algorithms and a battery of features. In this chapter, we flesh out some of the challenges that still remain, questions that have not been explored sufficiently, and new issues emerging from taking on new sentiment analysis problems. We also discuss proposals to deal with these challenges. The goal of this chapter is to equip researchers and practitioners with pointers to the latest developments in sentiment analysis and encourage more work in the diverse landscape of problems, especially those areas that are relatively less explored.
References
Посевкин Р. Автоматизация сентимент-анализа естественно-языкового текста / Р. Посевкин. — LAP Lambert Academic Publishing, 2014.
Гудфеллоу Я. Глубокое обучение / Я. Гудфеллоу, И. Бенджио, А. Курвилль. — 2017.
Шолле Ф. Глубокое обучение на Python / Ф. Шолле. — 2018.
Жерон О. Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow / О. Жерон. — 2018.
Саттон Р. Обучение с подкреплением / Р. Саттон, Э. Барто. — 2017.
Downloads
Published
How to Cite
Issue
Section
License
The author transfers for a period of 5 years to the Central Research Institute of Russian Sign Language non-exclusive rights to use the article in any form and in any way specified in Article 1270 of the Civil Code of the Russian Federation. The transfer of rights occurs at the time of downloading any materials through an automated system on this site.